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In various provers and deductive verification tools, logical transformations are used exten-
sively in order to reduce a proof task into a number of simpler tasks. Logical transformations
are often part of the trusted base of such tools. In this paper, we develop a framework to
improve confidence in their results. We follow a modular and skeptical approach: trans-
formations are instrumented independently of each other and produce certificates that are
checked by a third-party tool. Logical transformations are considered in a higher-order logic,
with type polymorphism and built-in theories such as equality and integer arithmetic. We
develop a language of proof certificates for them and use it to implement the full chain of
certificate generation and certificate verification.

1 Introduction
General Context and Motivation. Verifying a program is meant to improve its soundness
guarantees and relies on the trust towards the verification tool. Given how difficult it can be
to verify relatively simple programs, most tools try to simplify this process and to make it as
automatized as possible, which can drastically extend their trusted code base.

Consider deductive program verification, where the program to verify is annotated, and, in
particular, given a specification. In this setting, the code is analyzed against its specification
thus generating proof tasks, logical statements upon which depends the program correctness. To
discharge a proof task, one can first apply a logical transformation which reduces it to a number
of new proof tasks which are hopefully easier to discharge. Transformations are powerful tools
that can, for example, be applied to translate a task into a prover’s logic before calling it.

The main objective of this article is to improve trust in those logical transformations. This
work is decisive because logical transformations are general and can be used in many different
settings. We apply our method to the deductive program verification tool Why3 [6], which makes
extensive use of logical transformations. In fact, they are at the core of its interactive theorem
proving feature and are necessary to be able to encode proof tasks into the logic of one of the
dozens of third-party automatic theorem provers available inside Why3. The implementation
of the transformations adds up to a total of more than 17000 lines of OCaml code. This code
being in the trusted Why3 code base, it represents an interesting case study.
Example 1. Suppose that we have a proof task where we have to prove that p (y ∗y) holds for
any integer y of the form y = 2∗x+1 and any integer predicate p that satisfies the hypothesis H
stating that ∀i : int. p (4∗ i+1). Finding how to instantiate the hypothesis H is difficult or even
impossible for some automatic theorem provers so we cannot automatically discharge this task.
The transformation instantiate, defined in Why3, simply instantiates an hypothesis and when
called with arguments H and x∗x+x on the given task, produces the same task but with the added
hypothesis that states that p (4∗ (x∗x+x)+1). Provers won’t have to instantiate the hypothesis
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6 Proof-carrying logical transformations

H to discharge this new task. In fact, this task can now be discharged by theorem provers capable
of handling arithmetic goals on condition of translating it into the logic of the prover in question.
This translation is also being done with the help of transformations. The entire process described
in this example is to be trusted to ensure correctness of the initial program.

Contributions and Overview. In this article, we describe a practical framework to validate
logical transformations. In order to define what it means for a transformation to be correct,
the logical setting of proof tasks is detailed in Section 2. We follow a skeptical approach [4]:
certificates, defined in Section 3, are generated every time a transformation is applied and are
checked independently at a later time. Contrary to the autarkic approach, used for example
for some automatic theorem provers [28], which would consist here in verifying directly the
transformations, the skeptical approach has the benefit of not fixing the implementation of
the transformations. Our work is based on certificates with holes, a notion that is, to our
knowledge, new in the setting of the skeptical approach. This allows for modular development,
where certificates can be built incrementally and transformations can be composed and defined
independently. We extend our framework with some key interpreted theories in Section 4 and
show how to do so for any other interpreted theory along the way. The checkers for our certificates
can also be defined independently, as it is done in Section 5. In fact, we designed two checkers and
one of them is based on Lambdapi/Dedukti [3], an off-the-shelf proof assistant. This has also led
us to develop a translation procedure for proof tasks into the λΠ-Calculus modulo rewriting. This
approach, while applicable to logical transformations in general, has been applied to the program
verification tool Why3 for a number of its transformations including transformations dealing
specifically with higher-order logic. We conclude this article by evaluating this application to
Why3 in Section 6. The source code for the whole work described in this article is available in
the Why3 repository [21].

2 Logical Setting

We present the logical setting used throughout this article. The goal here is to define logical
transformations and the proof tasks they are applied to.

2.1 Types and Terms

Proof tasks are formed from typed terms and those terms are meant to designate both the terms
from the program and the formulas stating properties about them. We use the Hindley-Milner
type system [29] except that our terms are explicitly quantified over types. Names are taken
from an infinite set of available identifiers which is designated by ident.

Types are described by a type signature I, a set of pairs of the form ‘ι : n’ composed of an
ident called type symbol and an integer representing its arity. Sets are denoted by separating
their elements with commas. Note that according to the following grammar, type symbols are
always completely applied.

type ::= α type variable
| prop type of formulas
| type type arrow type
| ι(type, . . . ,type) type symbol application
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Terms have polymorphic types and new terms can be built by quantifying over terms of
any type. Quantification over type variables is explicit and restricted to only be in the prenex
form. Note that the application uses the Curry notation, i.e., a function term is applied to a
single argument term at a time. The application is left-associative and the type arrow  is
right-associative.

termpoly ::= termmono

| Πα. termpoly type quantifier

termmono ::= x variable
| > true formula
| ⊥ false formula
| ¬ termmono negation
| termmono op termmono logical binary operator
| termmono termmono application
| λx : type. termmono anonymous function
| ∃x : type. termmono existential quantifier
| ∀x : type. termmono universal quantifier

op ::= ∧ conjonction
| ∨ disjunction
| ⇒ implication
| ⇔ equivalence

The (term) substitution of variable x by term u in term t is written t[x 7→ u] and t[α 7→ τ ] is
the (type) substitution of type variable α by type τ in term t. A signature Σ is a set of pairs of
the form ‘x : τ ’ composed of a variable and its type; this type should be understood as quantified
over all of its type variables.
Definition 2 (Typing). We write I | Σ  t : τ when the term t has no free type variables and
has type τ in type signature I and signature Σ. We omit I when it is clear from the context.

The complete set of rules defining this predicate is given in Appendix A. Remark that, in
the case where t is an element of termmono then the predicate Σ  t : τ implies that t has no
type variables: t is monomorphic.

2.2 Proof Tasks

Proof tasks represent sequents in higher-order logic, they are formed from two sets of premises:
a set of hypotheses and a set of goals. A premise is a pair of the form ‘P : t’ composed of an
ident and a termpoly representing a formula.
Definition 3 (Proof Task). Let I be a type signature, Σ be a signature, Γ and ∆ be sets of
premises. Proof tasks are denoted by I | Σ | Γ `∆ which represents the sequent where goals,
given by ∆, and hypotheses, given by Γ, are written in the signature Σ with types in I. We allow
ourselves to omit I and, possibly, Σ, when they are clear from the context.

A task T := I | Σ | Γ `∆ is said to be well-typed when every premise P : t from Γ or ∆ is
such that I | Σ  t : prop. The validity of a task is only defined when it is well-typed. In this
case, the task T is said to be valid when every model of I, Σ and every formula in Γ is also a
model of some formula in ∆.
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Example 4. Consider the task I | Σ | Γ `∆ with

I := color : 0, set : 1
Σ := red : color(), green : color(), blue : color(),

empty : set(α), add : α set(α) set(α),
mem : α set(α) prop

Γ := H1 : Πα. ∀x : α. ∀y : α. ∀s : set(α). mem x s⇒mem x (add y s),
H2 : Πα. ∀x : α. ∀s : set(α). mem x (add x s)

∆ := G :mem green (add red (add green empty))

This task defines the types color and set with associated symbols red, green, blue, empty, add
and mem. The type symbol declaration set : 1 defines a type symbol set of arity 1 for polymorphic
sets. The signature declaration add : α set(α) set(α) allows us to declare a function that
can be used to add an element of any type to a set containing elements of the same type. This
task also defines hypotheses such that the predicate mem holds if its first argument is contained
in the second argument. For instance, the hypothesis H2 is applicable to sets of any type, and
states that every set contains the element that has just been added to it. With the given goal,
this task is valid.

2.3 Logical Transformations

A logical transformation is a function that takes a task as input and returns a list of tasks.
Lists are denoted by separating their elements with semicolons. We say that a transformation is
applied on an initial task and returns resulting tasks. A transformation can fail, in this case the
whole process is terminated and we do not have to prove the correctness of the application. If
a transformation succeeds, we want the verification to be based on the validity of the resulting
tasks and to be able to forget about the initial task. This is why we say that a transformation
application is correct when the validity of each resulting task implies the validity of the initial
task. In Example 1, the transformation instantiate returns the initial task modified by adding
the instantiated hypothesis to it. When a transformation application is correct, it only remains
to prove that this resulting task is valid in order to make sure that the initial task is also valid.
This is our approach: we certify transformation applications, thus relating initial and resulting
tasks.

3 Certificates

To verify a transformation, we instrument it to produce a certificate and check each application
of the transformation thanks to the corresponding certificate. We first define our own certificate
format with the goal of making the verification of those certificates as easy as possible. We show
how to improve modularity and ease of use in a second time in Section 5.1.

3.1 Syntax

An excerpt of the recursive definition of certificates is given in Figure 1. More certificates will be
detailed on their own in Section 4 and the others won’t be presented in this article for brevity.
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cert ::= KHole(task)
| KTrivial(bool, ident)
| KAssert(ident,termpoly,cert,cert)
| KSplit(bool,termmono,termmono, ident,cert,cert)
| KDestruct(bool,termmono,termmono, ident, ident, ident,cert)
| KIntroQuant(bool,type,termmono, ident, ident,cert)
| KInstQuant(bool,type,termmono, ident, ident,termmono,cert)
| KIntroType(termpoly, ident, ident,cert)
| KInstType(termpoly, ident, ident,type,cert)
| . . .

Figure 1: Definition of Kernel Certificates (excerpt)

We call these certificates the kernel certificates. To make certificates easier to check, we design
them in such a way that they are very precise. For example, the Boolean values indicate whether
the premise is an hypothesis or a goal. Moreover, the kernel certificates have voluntarily been
kept as elementary as possible and this makes it easier to trust them. In particular, this approach
makes it easier to check every case (about 20 of them) when proving by induction a property of
correctness of kernel certificates, as it is done in paragraph 5.3.3.

The certificates can contain tasks and each KHole node carries one of those tasks. When c
is a certificate, the leaves of c designate the list of all tasks obtained by collecting them (in the
KHole nodes) when doing an in-order traversal of the certificate tree. The leaves of a certificate
are meant to be, in the end, the resulting tasks of the transformation it is certifying. A certificate
with holes associated to a transformation application can be checked without needing to wait for
the proof of the returned tasks to fill its holes, and this is what makes our certificates original.
This design choice has been guided by our will for modularity: we want to progressively certify
logical transformations.

3.2 Semantics

The semantics of certificates is defined by a binary predicate T ↓ c, linking the initial task T to
a certificate c. Informally, the predicate T ↓ c holds if c represents a proof of the fact that the
validity of the leaves of c implies the validity of T . In Figure 2, we give the rules that cover
the certificates from Figure 1. In this sense, the rules are only an excerpt of the complete set
of rules (given in Appendix B) defining the predicate T ↓ c. Notice that some of the certificates
have dual rules for the hypotheses and the goals.

The certificate KHole is used to validate transformations that have resulting tasks and can be
used directly for the identity transformation. The certificate KTrivial is used to validate a trans-
formation application that has no resulting task when the initial task contains a trivial premise.
The KAssert certificate allows to introduce a cut on a polymorphic formula. Remember that the
side condition implies that this formula cannot have free type variables. The certificates KSplit
and KDestruct are used to validate a transformation application that first splits a premise H.
Certificate KIntroQuant is used to introduce the variable of a quantified premise. The certificate
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Γ `∆ ↓ KHole(Γ `∆) Γ,H :⊥ `∆ ↓ KTrivial(false,H) Γ `∆,G :> ↓ KTrivial(true,G)

Σ | Γ `∆,P : t ↓ c1 Σ | Γ,P : t `∆ ↓ c2 Σ  t : prop
Σ | Γ `∆ ↓ KAssert(P,t,c1, c2)

Γ,H : t1 `∆ ↓ c1 Γ,H : t2 `∆ ↓ c2

Γ,H : t1∨ t2 `∆ ↓ KSplit(false, t1, t2,H,c1, c2)
Γ `∆,G : t1 ↓ c1 Γ `∆,G : t2 ↓ c2

Γ `∆,G : t1∧ t2 ↓ KSplit(true, t1, t2,G,c1, c2)

Γ,H1 : t1,H2 : t2 `∆ ↓ c
Γ,H : t1∧ t2 `∆ ↓ KDestruct(false, t1, t2,H,H1,H2, c)

Γ `∆,G1 : t1,G2 : t2 ↓ c
Γ `∆,G : t1∨ t2 ↓ KDestruct(true, t1, t2,G,G1,G2, c)

Σ,y : τ | Γ,H : t[x 7→ y] `∆ ↓ c y is fresh w.r.t. Σ,Γ,∆, t
Σ | Γ,H : ∃x : τ. t `∆ ↓ KIntroQuant(false,τ,λx : τ. t,H,y,c)

Σ,y : τ | Γ `∆,G : t[x 7→ y] ↓ c y is fresh w.r.t. Σ,Γ,∆, t
Σ | Γ `∆,G : ∀x : τ. t ↓ KIntroQuant(true,τ,λx : τ. t,G,y,c)

Σ | Γ,H1 : ∀x : τ. t,H2 : t[x 7→ u] `∆ ↓ c Σ  u : τ
Σ | Γ,H1 : ∀x : τ. t `∆ ↓ KInstQuant(false,τ,λx : τ. t,H1,H2,u,c)

Σ | Γ `∆,G1 : ∃x : τ. t,G2 : t[x 7→ u] ↓ c Σ  u : τ
Σ | Γ `∆,G1 : ∃x : τ. t ↓ KInstQuant(true,τ,λx : τ. t,G1,G2,u,c)

I, ι : 0 | Σ | Γ `∆,G : t[α 7→ ι] ↓ c ι 6∈ I
I | Σ | Γ `∆,G : Πα. t ↓ KIntroType(Πα. t,G,ι,c)

Γ,H1 : Πα. t,H2 : t[α 7→ τ ] `∆ ↓ c τ has no type variables
Γ,H1 : Πα. t `∆ ↓ KInstType(Πα. t,H1,H2, τ,c)

Figure 2: Certificate Rules (excerpt)

KInstQuant is used to instantiate a quantified premise with a term and the side condition ensures
that this term is monomorphic. The certificates KIntroType and KInstType are used to deal with
type-quantified premises.

Example 5. Let T and Tinst denote, respectively, the initial and the resulting task from Exam-
ple 1, and let Hinst be the name of the new instantiated hypothesis. Suppose that symbol plus,
symbol mult and type symbol int are defined in the signature and type signature, then we have



Quentin Garchery 11

T ↓ c with

c := KInstQuant(false, int,λi : int. p (plus (mult 4 i) 1),
H,Hinst, int,plus (mult x x) x,KHole(Tinst))

Proposition 6. If T is well-typed then every task in a derivation T ↓ c is also well-typed.
We also assume that transformations are always applied to well-typed initial tasks and

produce well-typed resulting tasks (or they fail), so that every task we consider from now on is
implicitly assumed to be well-typed.
Theorem 7 (Certificate Correctness). If T ↓ c then the validity of each leaf of c implies the
validity of T .

Proof. By induction on T ↓ c.

3.3 Design choices

The certificate rules are taken from the sequent calculus LK rules with modifications for two
reasons. First, we want the production of certificates to be more natural. This is why the name
KSplit is well-suited for a transformation application that, from the initial task Γ,H : t1∨ t2 `∆,
returns Γ,H : t1 ` ∆ and Γ,H : t2 ` ∆. Indeed, it would be confusing to say that, from this
initial task, the transformation does the left introduction of the disjunction. Second, we want
to be able to implement a checker of certificates following these rules. To this end, instead of
asking the checkers to find the names that were chosen by the transformation, we register these
names in the certificates. For example, the KIntroQuant certificate mentions the name y of the
new fresh variable that is being introduced and this is reflected in the corresponding rules.

3.4 Certifying Transformations and Composition

Definition 8 (Certifying transformation). A certifying transformation is a transformation that,
applied on an initial task, produces, on top of a list L of resulting tasks, a certificate c such that
L is the leaves of c. We say that we instrumented the transformation to produce a certificate.

Composing transformations is useful to define a transformation from simpler ones. To com-
pose certifying transformations, one also needs to be able to substitute certificates, that is, to
replace a KHole in one certificate with another certificate. This composition allows for a modular
development of certifying transformations.

4 Adding Support for Interpreted Theories
For now, our formalism implicitly makes the assumption that every symbol is uninterpreted: they
are taken as fresh new symbols for every task. Still, we want some symbols (such as equality
or arithmetic operations) to have a fixed interpretation. Moreover, some transformations, like
induction, use specific theories and we need to add certificate steps to be able to certify them.

To make sure that the interpretation is unique, we should not quantify over the interpreted
symbols at the level of the tasks. Interpreted symbols are not part of the signature or type
signature of tasks. This ensures that the interpretation stays the same for the initial task
and for the resulting tasks and this is enough to handle transformations on tasks that contain
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interpreted symbols. To handle transformations that deal with the interpreted symbols and use
their properties, we extend our certificate format and add rules corresponding to their properties.

4.1 Polymorphic Equality

The polymorphic equality is interpreted. To obtain the usual properties of the equality, we add
the certificates:

KEqRefl(termmono, ident)
KRewrite(bool,termmono,termmono,termmono, ident, ident,cert)

and three kernel rules:

Σ | Γ `∆,G : x= x ↓ KEqRefl(x,G)
Γ,H : a= b,P : t[b] `∆ ↓ c

Γ,H : a= b,P : t[a] `∆ ↓ KRewrite(false,a,b, t,P,H,c)

Γ,H : a= b `∆,P : t[b] ↓ c
Γ,H : a= b `∆,P : t[a] ↓ KRewrite(true,a,b, t,P,H,c)

When t is a function of the form λx. u, we write t[u′] for the substitution u[x 7→ u′]. These
rules deal with the reflexivity of equality and the rewriting under context. They are sufficient
to obtain the standard properties of equality: symmetry, transitivity, and congruence.

Application to the rewrite Transformation. The Why3 rewrite transformation is a pow-
erful transformation that can rewrite terms modulo an equality that is under implications and
universal quantifiers. It looks for a substitution to match the left-hand side of the given equality
to rewrite it as the right-hand side following this substitution. Moreover, it allows rewriting from
right to left instead. We instrument this transformation in the general case: using the found
substitution, we define certificates to introduce in turns implications and universal quantifiers in
a temporary hypothesis, to then apply symmetry of equality if needed and to use this equality
to rewrite the target premise and finally remove the temporary hypothesis.

4.2 Integers

The type symbol int, integer literals and the operator symbols +, ∗, −, >, <, ≥ and ≤ are
interpreted. To be able to certify a transformation that performs an induction on integers, we
add a certificate KInduction(ident,termmono,termmono, ident, ident, ident,cert,cert) to the kernel
certificates with one rule for strong induction:

i is fresh w.r.t. Γ,∆, t Σ  i : int Σ  a : int
Γ,Hi : i≤ a `∆,G : t[i] ↓ cbase Γ,Hi : i > a,Hrec : ∀n : int, n < i⇒ t[n] `∆,G : t[i] ↓ crec

Γ `∆,G : t[i] ↓ KInduction(i,a, t,G,Hi,Hrec, cbase, crec)

Application to the induction Transformation. The Why3 induction transformation can
be called even if the context depends on the integer on which the induction is done and, in
this case, the induction hypothesis takes into account this context. This transformation is
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instrumented to produce the certificate that first puts in the goal the premises that depend on
the integer on which the induction is done, applies the KInduction certificate, and then, for the
two resulting tasks, introduces those premises.

5 Certificate Checker

Let us consider an application of a certifying transformation φ on an initial task T that produces
a certificate c and a list of resulting tasks L. To verify that this application is correct, c, T
and L are provided as input to some checker. If the checker validates this application then
the transformation returns L, otherwise it fails. In this section, we present the elaboration of
certificates, a preprocessing step realized before calling any checker. We then show how to define
such checkers and be confident in their answers.

5.1 Surface Certificates and Elaboration

Making a transformation certifying can
be difficult, especially if the transfor-
mation has to produce a low level cer-
tificate. To facilitate this process, we
define surface certificates that are eas-
ier to use than kernel certificates. We
instrument the transformations to pro-
duce surface certificates instead of ker-
nel certificates and implement an elabo-
ration procedure to translate them into
kernel certificates. In order to obtain
the needed data to produce the kernel
certificate, before calling a checker, the
elaboration procedure is called with the
initial task and the resulting tasks as in-
put. Because the proof of correctness of
certificates is done on the kernel certificates, we can define more complex surface certificates, as
long as we are able to define the elaboration for them. Another advantage of surface certificates
over kernel certificates is that they are less verbose, making them easier to produce.

Example 9. The surface certificate SSplit(ident,cert,cert) is elaborated into the kernel certificate
KSplit. Suppose that a certifying transformation applied on initial task T := H : x1∨x2 ` G : x
returns the list T1; T2 with T1 :=H : x1 `G : x and T2 :=H : x2 `G : x and the surface certificate
SSplit(H,KHole(T1),KHole(T2)). The elaboration produces a kernel certificate indicating which
formulas it is applied to (x1 and x2) and that H is not a goal (Boolean false):

KSplit(false,x1,x2,H,EHole(T1),EHole(T2))

We can define every surface certificate that we find convenient. For now there are about 10
more surface certificates than kernel certificates. Among them, there are SEqSym and SEqTrans
for symmetry and transitivity of equality and SConstruct described in the following example.
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Example 10. We define the surface certificate SConstruct(ident, ident, ident,cert) to validate a
transformation application that first merges two premises into one. More precisely, by writing
c′ a certificate c that has been elaborated, we should be able to derive the following rules:

Γ,P : t1∧ t2 `∆ ↓ c′

Γ,P1 : t1,P2 : t2 `∆ ↓ SConstruct(P1,P2,P,c)′
Γ `∆,P : t1∨ t2 ↓ c′

Γ `∆,P1 : t1,P2 : t2 ↓ SConstruct(P1,P2,P,c)′

The SConstruct certificate does not have a corresponding kernel certificate. Instead, it is
replaced during elaboration by a combination of the KAssert certificate on formula t1 ∧ t2 and
other propositional certificates, notably KDestruct. Notice that we need to have access to the
formula t1 ∧ t2, which is precisely the point of the elaboration and why we could not define
directly SConstruct as a combination of surface certificates.

5.2 OCaml Checker

We implemented two checkers, the first one is written in OCaml and follows a computational
approach: it is based on a function ccheck that is called with the certificate c and initial task T
and interprets the certificate as instructions to derive tasks such that their validity implies the
validity of T , verifying in the end that the derived tasks are the leaves of c. The checker validates
the application when this function returns true.
Theorem 11. Let c be the certificate produced by applying a certifying transformation on task T .
If ccheck c T = true then T ↓ c.

The OCaml-checker definition follows closely the semantics of the certificates. For this reason,
the proof of the previous theorem is relatively straightforward to do on paper. Together with
Theorem 7, this guarantees that each application of a transformation that is checked by the
OCaml checker is correct.

5.3 Lambdapi Checker

The second checker uses Lambdapi/Dedukti [3], a proof assistant based on a type checker for the
λΠ-Calculus modulo rewriting which extends the λΠ-Calculus formalism with custom rewriting
rules. This checker has two main advantages over the OCaml checker: (1) this checker uses an
off-the-shelf proof assistant, benefiting from its reliability and its features, such as the ability
to define custom rewriting rules; (2) this checker is proven to be correct, and this proof is
machine-checked.

:

Every time a transformation is called, a
Lambdapi proof is generated, and this proof
is then checked by the type checker. More pre-
cisely, we define a shallow embedding of proof
tasks in Lambdapi: a proof task T is encoded
as a Lambdapi formula T̂ . In the diagram, a
certifying transformation is applied to the ini-
tial task T and produces the resulting tasks
L := T1; . . . ;Tn and a certificate c, elaborated
as ckernel. Our tool then generates the type
ty(T,L) which is the Lambdapi formula stat-
ing that T̂1, T̂1, . . . , and T̂n implies T̂ , type that
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we call the application correctness type. Finally, we check that the application is correct by gen-
erating a proof term t(ckernel) and asking Lambdapi to check that t(ckernel) has type ty(T,L).

This approach assumes that we trust Lambdapi, its type checker and the embedding of
proof tasks (paragraphs 5.3.1 and 5.3.2). However the proof term generation is not contained
in the trust base: the way the term is obtained does not matter as long as it has the requested
type. Additionally, we have defined terms in Lambdapi for each certificate (paragraph 5.3.3),
including certificates from interpreted theories (paragraph 5.3.4). These terms have been checked
by Lambdapi to have the expected type so this gives us a machine-checked proof of Theorem 7.
Theorem 12. Consider a transformation application that from task T returns the list of tasks L.
If the application correctness type ty(T,L) is inhabited, then this application is correct.

5.3.1 Shallow Embedding

In Lambdapi, we define the translation of a task validity by quantifying over type symbols and
function symbols, thus making these declarations explicit. We are able to quantify in this way,
both at the level of types and at the level of terms, by using an encoding of the Calculus of
Constructions [26] (written CoC) inside Lambdapi. We obtain a formal description of the whole
task which allows us to state and prove the correctness of a transformation application. For the
system to stay coherent we should be careful when adding rewriting rules and axioms (symbols
in Lambdapi). We make use of an existing CoC encoding inside Lambdapi [12] to which we add
the axiom of excluded middle. This encoding is also a shallow embedding inside Lambdapi, so
we also get a shallow embedding of our language inside Lambdapi. In this way, we do not need
to explicitly mention the context of proof and to handle it through inversion and weakening
lemmas, which would make the method impracticable.

We are able to translate our whole formalism using this embedding. The translation of a
term, a type or a task t inside Lambdapi is denoted t̂. We use exclusively the CoC syntax to
describe this translation: we write ∀x : A, B for the dependent product, A→ B when B does
not depend on x, λx :A, B for the abstraction and omit A when it can easily be inferred. The
sorts are Type and Kind, with Type being of type Kind. To translate the terms, we use an
impredicative encoding [30]. Here is an excerpt of this encoding:

p̂rop := Type ⊥̂ := ∀C : Type, C
t̂1∧ t2 := ∀C : Type, (t̂1→ t̂2→ C)→ C >̂ := ⊥̂ → ⊥̂
t̂1∨ t2 := ∀C : Type, (t̂1→ C)→ (t̂2→ C)→ C ¬̂ t := t̂→ ⊥̂

We note ¬̂ u for u→ ⊥̂ such that ¬̂ t= ¬̂ t̂ and we extend this notation to the conjunction
and the disjunction. Note that >̂ is inhabited by λc, c.

5.3.2 Translating Tasks

Let us give the translation of a task, where Typen denotes the n-ary function over Type (for
example, Type2 is Type→ Type→ Type).

Task I | Σ | Γ `∆ with : Corresponding Lambdapi term:
I := ι1 : i1, . . . , ιm : im ∀ι1 : Typei1 , . . . ,∀ιm : Typeim ,
Σ := f1 : τ1, . . . ,fn : τn ∀f1 : τ̂1, . . . ,∀fn : τ̂n,

Γ :=H1 : t1, . . . ,Hk : tk t̂1→ ·· · → t̂k→
∆ :=G1 : u1, . . . ,Gl : ul ¬̂ u1→ ·· · → ¬̂ ul→ ⊥̂
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Note that for polymorphic symbols, we need to declare them with extra type parameters and to
apply them to the appropriate type in the translation.

5.3.3 Proof Term

For each kernel rule, we associate a Lambdapi type and define a term that has this type. When
building a proof term, we first introduce the identifiers of the resulting tasks and the identifiers
of the type symbols, function symbols and name of the premises of the initial task. Then, we
translate the whole certificate using the terms having the associated types. The KHole certificate
is special and does not have a fixed associated type. Instead, it is translated as the identifier
of the task it contains applied to its symbols and premises following the same order that they
have been introduced in. Assuming that our encoding is correct, the fact that we define a term
for every rule of the certificate semantics gives us a machine-checked proof of the certificate
correctness, Theorem 7.

To produce the proof term, we benefit from the elaboration of certificate in two ways. First,
the fact that the kernel certificates are elementary also facilitates the definition of the terms
corresponding to a kernel rule. Second, each kernel certificate comes with additional data that
we are able to use to define such terms.
Example 13. For the KSplit rule presented in Figure 2, we define a Lambdapi term split that
has the associated type ∀t1 : Type, ∀t2 : Type, (t1→ ⊥̂)→ (t2→ ⊥̂)→ t1 ∨̂ t2→ ⊥̂. We check
the application of Example 9 by verifying that the type

(∀x1, ∀x, x1→ ¬̂ x→ ⊥̂)→
(∀x2, ∀x, x2→ ¬̂ x→ ⊥̂)→
∀x1, ∀x2, ∀x, x1 ∨̂ x2→ ¬̂ x→ ⊥̂

is inhabited by the term

λs1, λs2, λx1, λx2, λx, λH, λG,

split x1 x2 (λH, s1 x1 x H G) (λH, s2 x2 x H G)

Notice that split takes the formulas it is applied to as arguments (x1 and x2) and that those
formulas have been found by elaborating the certificate.

5.3.4 Encoding of Interpreted Theories

In Lambdapi, interpreted symbols are first declared in the preamble. When interpreted symbols
have corresponding certificate rules, we need to use the properties of those symbols to prove
that the types associated to these rules are inhabited. Instead of declaring such symbols, we
define them, which allows us to prove the needed properties. Since our Lambdapi development
is included in the trusted code base of the Lambdapi checker, we make sure to only add axioms
and rewrite rules when necessary.

Polymorphic Equality. We define the equality in Lambdapi using the Leibniz definition of
equality: two terms t1 and t2 of type τ are equal when ∀Q : τ → Type, Q t1 → Q t2. Note
that the context of rewriting in the KRewrite rules is explicitly given as a function. We use this
function, translated as a Lambdapi function, to apply it to the Leibniz equality when writing a
proof term for a KRewrite certificate.
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Integers. We define the integer type and usual integer operators in Lambdapi. First, we
define binary positive integers and binary negative integers. Integers are then either 0, positive
or negative. We use rewrite rules to define those data types which should be understood as
algebraic data types [5]. From these definitions, we get a simple induction principle that we use
to define a Lambdapi term corresponding to the stronger induction principle described by the
rule of the certificate KInduction.

6 Experimental Evaluation

The goal of this article is to provide a practical framework to render logical transformations
certifying. We apply the framework to Why3 and show that the approach does not have an
inherent problem of efficiency. More importantly, we show that it is expressive enough to allow
us to render complex transformations certifying.

6.1 Tests and Benchmarks

We defined simple certifying transformations (about 15 of them) to test every certificate. We
also defined a more complex transformation called blast meant to discharge tautological propo-
sitional tasks. This transformation decomposes every logical connector appearing at the head
of formulas before calling itself recursively. Rendering this transformation certifying required
using the composition of certifying transformations. We evaluated the efficiency of our checkers
by applying this transformation on problems of increasing size in Figure 3. The problem with n
propositional variables is to verify that:

p1⇒ (p1⇒ p2)⇒ . . .(pn−1⇒ pn)⇒ pn

We notice that the size of the kernel certificates is not linear with respect to the number of
variables. This is due to the fact that, contrary to the surface certificates, the kernel certificates
contain the formulas they are applied to. Looking at the OCaml checker, our approach does not
seem to have an inherent problem of efficiency as the overhead it adds to the transformation is
negligible. On the other hand, the Lambdapi checker seems to be much slower. Performances
of Lambdapi have already been improved for our purposes [16–20], and we believe they could
be further improved in future versions. We could also modify our checker to help Lambdapi, for
example by abstracting away big formulas. We leave this for future work.

6.2 Applications

We evaluated our method by applying it at different levels. When rendering the existing trans-
formations rewrite and induction certifying, we found that it is well-suited to add interpreted
theories. When transformations do not specifically deal with the theory in question, we do
not need to extend our certificate format, while, in general, the duo surface/kernel certificates
allows us to only define a minimal set of kernel rules, even if it means deriving more surface
certificates. By defining the Lambdapi checker, we gave a machine-checked proof of the rules of
our certificates which gives us confidence in our certificates and their semantics.
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number of vari-
ables

5 10 15 20 25 50 100 200 400 800

transformation
time (sec)

∼ 0 ∼ 0 0.008 0.016 0.020 0.080 0.29 1.21 5.5 25

kernel cer-
tificate size
(kB)

2.1 5.8 12 19 28 85 270 950 3500 13000

OCaml checker
time (sec)

∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.020 0.084 0.35

Lambdapi chec-
ker time (sec)

0.072 0.25 0.80 2.0 4.2 48 660 - - -

Figure 3: Tests on Propositional Tasks

6.3 Better Understanding of Transformations

This work has led to a better understanding of transformations. On one hand, instrumenting a
transformation to produce an appropriate certificate requires to understand why each application
of this transformation is correct. Additionally, once this is done, reading the certificate gives
us another way to understand why a particular transformation application is correct. On the
other hand, this work had led to the definition of the semantics of tasks inside Lambdapi and
the definition of the correction of a transformation in this setting.

In particular, type quantification is explicit in Section 2.1. For example, the formula Πα. (∀x :
α. ∀y : α. x= y)∨¬(∀x : α. ∀y : α. x= y) means that every type α either has at most one element
or it has more than one. This formula is provable but we cannot apply the certificate KSplit on
such an hypothesis. By contrast, in Why3, the type quantification is implicit, and it is possible
apply the destruct transformation on the hypothesis. This gives us two resulting tasks: one
with an hypothesis which states that every type has at most one element, and the other with an
hypothesis which states that every type has more than one element, both being contradictory.
This bug [15] has been found in the transformation destruct when encoding proof tasks in
Lambdapi; a similar bug was also found in the transformation case.

7 Related Work
To aid deductive program verification, a number of tools have been developed, based on proof
assistants or independently from them. In the first case, the programming language on which
the verification is done is built from dedicated libraries and definition of both the programming
language and its logic inside the proof assistant. This is the case for example for the library
Iris [27] built on top of Coq and that allows reasoning about concurrent, imperative programs
or the library AutoCorres [23, 24] built on top of Isabelle and allowing to verify C programs.
In such context, the correctness of the approach is based on the formal semantics of programs
and on deduction rules established once and for all, which requires a large proof effort, thus
limiting the flexibility of the language. In the second case, the tools developed are verifying
annotated programs, and generate proof obligations that are discharged by automatic theorem
provers such as SMT solvers. Examples of such tools are Why3, Dafny, Viper, Frama-C and
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SPARK. Even though they rely on strong fundamental bases, their particular implementations
of such tools and some practical aspects such as their use of automatic theorem provers have not
been machine-checked and can contain bugs. An exception is given by F* [31], whose encoding’s
correctness to SMT logic has been partially proved in Coq [1].

Our work lies in between these two approaches. On one hand logical transformations are
similar to tactics used in proof assistants such as Coq [13], except that our transformations are
considered part of the trusted code base. On the other hand, logical transformations can be
used automatically or interactively to help discharging proof obligations. We followed a skeptical
approach extended with a preprocessing step (namely the elaboration of certificates) similarly
to [10], except that our framework allows to check higher order proofs, and that the focus is put
on the ease of production of certificates. Indeed, we aim at making it as easy as possible to render
transformations certifying. We designed two checkers: one based on the reflexive approach,
known to be very efficient [2, 25] and the other one based on a shallow embedding into the
Lambdapi proof assistant. When using a shallow embedding, the correctness of the verification
relies on the considered proof tool’s correctness which makes its proof much easier [9, 11].

8 Conclusion
We presented a framework to validate logical transformations based on a skeptical approach.
When defining certificates, we put an emphasis on modularity by having certificates with holes
and, with the notions of surface and kernel certificates, ease of use without compromising the
checker’s verification. We combined all of these notions and applied them to Why3 by imple-
menting the certificate generation for various transformations and the certificate verification
with two checkers. The first checker was written in OCaml and uses a computational approach
which makes it very efficient while the second checker is based on Lambdapi and gives us formal
guarantees to its correctness. We extended our work by adding the interpreted theories of the
integers and of the polymorphic equality. This allowed us to instrument more complex and
existing transformations to produce certificates, such as induction and rewrite. Finally, we
validated our method during development and through tests and benchmarks.

Future Work. The current application of our method to Why3 could be improved at differ-
ent levels. The first idea is to instrument more transformations to produce certificates, with
polymorphism elimination [7] and algebraic data type elimination being important challenges.
As the number of certifying transformations increases, we also want to improve the efficiency of
the verification. To do so, we consider two factors: first, we want to compress certificates on the
fly when combining them; second, we want to improve the efficiency of the Lambdapi checker by
allowing to reuse the context of proof that does not change. Additionally, we consider adding
support for more interpreted theories, while keeping the number of axioms and rewrite rules
added to Lambdapi to a minimum.

A long term goal is to increase trust in other parts of Why3. For example, we could improve
trust when calling automatic theorem provers [2,8] or improve trust in the proof task generation
which would require to formalize the semantics of the Why3 programming language [14].

Finally, our method is not specific to Why3 and can be applied, in general, to certified logical
encodings. In particular, existing (certifying) transformations could be used for encoding a proof
assistant’s logic into an automatic theorem prover’s logic in order to benefit from both systems.
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A Typing

The predicate Σ  t : τ holds when t has no free type variables and is of type τ in signature Σ
and is formally defined by the following rules:

I, ι : 0 | Σ  t[α 7→ ι] : prop ι 6∈ I
I | Σ  (Πα. t) : prop

τ is a subtype of Σ(x) τ has no type variables
Σ  x : τ

Σ > : prop Σ ⊥ : prop
Σ  t : prop

Σ  ¬t : prop
Σ  t1 : prop Σ  t2 : prop

Σ  t1 op t2 : prop

Σ  t1 : τ ′ τ Σ  t2 : τ ′

Σ  t1 t2 : τ
Σ,x : τ  t : prop τ has no type variables x 6∈ Σ

Σ  (∀x : τ. t) : prop

Σ,x : τ  t : prop τ has no type variables x 6∈ Σ
Σ  (∃x : τ. t) : prop

Σ,x : τ ′  t : τ τ ′ has no type variables x 6∈ Σ
Σ  (λx : τ ′. t) : τ ′ τ

B Certificate rules

For each kernel certificate appearing in this article, we give its corresponding rules. Theses rules
are taken from the set of rules definining the predicate T ↓ c.

Γ `∆ ↓ KHole(Γ `∆) Γ,H :⊥ `∆ ↓ KTrivial(false,H) Γ `∆,G :> ↓ KTrivial(true,G)

Σ | Γ `∆,P : t ↓ c1 Σ | Γ,P : t `∆ ↓ c2 Σ  t : prop
Σ | Γ `∆ ↓ KAssert(P,t,c1, c2)

Γ,H : t1 `∆ ↓ c1 Γ,H : t2 `∆ ↓ c2

Γ,H : t1∨ t2 `∆ ↓ KSplit(false, t1, t2,H,c1, c2)
Γ `∆,G : t1 ↓ c1 Γ `∆,G : t2 ↓ c2

Γ `∆,G : t1∧ t2 ↓ KSplit(true, t1, t2,G,c1, c2)

Γ,H1 : t1,H2 : t2 `∆ ↓ c
Γ,H : t1∧ t2 `∆ ↓ KDestruct(false, t1, t2,H,H1,H2, c)

Γ `∆,G1 : t1,G2 : t2 ↓ c
Γ `∆,G : t1∨ t2 ↓ KDestruct(true, t1, t2,G,G1,G2, c)
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Σ,y : τ | Γ,H : t[x 7→ y] `∆ ↓ c y is fresh w.r.t. Σ,Γ,∆, t
Σ | Γ,H : ∃x : τ. t `∆ ↓ KIntroQuant(false,τ,λx : τ. t,H,y,c)

Σ,y : τ | Γ `∆,G : t[x 7→ y] ↓ c y is fresh w.r.t. Σ,Γ,∆, t
Σ | Γ `∆,G : ∀x : τ. t ↓ KIntroQuant(true,τ,λx : τ. t,G,y,c)

Σ | Γ,H1 : ∀x : τ. t,H2 : t[x 7→ u] `∆ ↓ c Σ  u : τ
Σ | Γ,H1 : ∀x : τ. t `∆ ↓ KInstQuant(false,τ,λx : τ. t,H1,H2,u,c)

Σ | Γ `∆,G1 : ∃x : τ. t,G2 : t[x 7→ u] ↓ c Σ  u : τ
Σ | Γ `∆,G1 : ∃x : τ. t ↓ KInstQuant(true,τ,λx : τ. t,G1,G2,u,c)

I, ι : 0 | Σ | Γ `∆,G : t[α 7→ ι] ↓ c ι 6∈ I
I | Σ | Γ `∆,G : Πα. t ↓ KIntroType(Πα. t,G,ι,c)

Γ,H1 : Πα. t,H2 : t[α 7→ τ ] `∆ ↓ c τ has no type variables
Γ,H1 : Πα. t `∆ ↓ KInstType(Πα. t,H1,H2, τ,c)

Σ | Γ `∆,G : x= x ↓ KEqRefl(x,G)
Γ,H : a= b,P : t[b] `∆ ↓ c

Γ,H : a= b,P : t[a] `∆ ↓ KRewrite(false,a,b, t,P,H,c)

Γ,H : a= b `∆,P : t[b] ↓ c
Γ,H : a= b `∆,P : t[a] ↓ KRewrite(true,a,b, t,P,H,c)

i is fresh w.r.t. Γ,∆, t Σ  i : int Σ  a : int
Γ,Hi : i≤ a `∆,G : t[i] ↓ cbase Γ,Hi : i > a,Hrec : ∀n : int, n < i⇒ t[n] `∆,G : t[i] ↓ crec

Γ `∆,G : t[i] ↓ KInduction(i,a, t,G,Hi,Hrec, cbase, crec)
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